Intellectual Property and the Scale of the Market

Michele Boldrin and David K. Levine

December 1, 2004

What IP and Why?

- ➤ Intellectual property: patents and/or copyrights, but not trademark
- ➤ Economic rationale for IP: first copy subject to indivisibility or "fixed cost," followed by distribution at zero marginal cost
- ➤ Goods with fixed cost + constant marginal cost will not be produced under competition. Hence government "should" create time-limited monopoly

How Much IP?

- ➤ What is the optimal level of protection?
- ➤ What is the tradeoff between increasing the monopoly distortion for inframarginal ideas versus increasing the number of marginal ideas that are produced?
 - Copyright is life of author plus 70 years for individual works, 95 years for works for hire
 - Design patents are 20 years, ornamentation patents are 14 years
 - Do these terms make sense?

Scale of Market

- ➤ How does the scale of the market figure into the computation of optimal protection?
 - G7 nations about 2/3rds of world GDP; so WTO can potentially expand market size by 50%, even without growth
 - World population has risen by a factor of about 4 and real GDP has risen by a factor of about 20 during the 20th century
 - We argue that IP length should decrease with the size of markets.
 - Rule of thumb: roughly in half inverse proportion (quadruple the market, halve the protection)
- ➤ Is relevant measure of scale population or GDP?

Literature

- ➤ Gilbert & Shapiro, Gallini length versus breadth in a one-good world
- ➤ Can "breadth" be legislated easily?
- ➤ Grossman and Lai optimal size of protection independent of market size

Optimal IP Length

- ➤ Trade off between monopoly distortion on inframarginal ideas versus discouragement/encouragement of marginal ideas
- ➤ How does this depend on the scale of the market?

The Model

characteristics of ideas $\omega \in \Omega$ a compact subset of \Re^n

minimum labor $h(\omega) \geq 0$ to produce, create or invent idea with characteristics ω ; $h(\omega)$ a continuous function

measure $\eta(\omega)$ the "number" of ideas with characteristics ω in an economy of unit size

 $x(\omega)$ consumption of a "representative" idea with characteristics ω

if labor input less than $h(\omega)$ then $x(\omega)=0$, otherwise any level $x(\omega)$ attainable

positive marginal cost of output examined in the paper

per capita consumption is $z(\omega) = x(\omega)/\lambda$

Continuum of Ideas Model: individual ideas are small relative to size of economy

Consider the size of some big ideas:

Manhattan Project (1942-1945): \$7 billion per year in 1996 \$;

GDP in 1944-1945 about \$1700 billion per year in 1996 \$

Manhattan Project cost approximately 0.4% of GDP

NASA (1962-73) about \$15 billion per year in 1994 \$; Apollo project about 1/3 of it

1968 GDP, in 2000 \$, about \$3,700 billion

Moon landings cost approximately 0.15% of GDP

Privately financed ideas

"The Titanic" cost \$200 million in 1997

DiMasi et al [1991] estimate average cost of bringing a new drug to market at \$231 million 1987 \$

Privately financed ideas at most 1/10,000 of US GDP

Note that all these "big" ideas are in fact composed of many small ideas

The Model (continued)

Continuum population of agents of size λ (the scale of the economy)

Total number of ideas with characteristics ω available in an economy of size λ is $\eta(\omega)g(\lambda)$

 $g(\lambda)$ is assumed non-decreasing in λ ; g(1) = 1

if $g(\lambda) = \lambda$ an economy that is twice as big has twice as many ideas

Consumption

Representative individual has Dixit-Stiglitz utility over goods with different characteristics

Consuming z units of a good with characteristics ω gives utility $v(z,\omega)$

 $v(z,\omega)\geq 0$ continuous in ω , non-decreasing, and at least up to a limit z^* , smooth and strictly increasing

$$\lim_{z\to\infty}v(z,\omega)=v^C(\omega)<\infty$$
 , $v(0,\omega)=0$

$$zv_z(z,\omega) o 0$$
 as $z o \infty$

(this just means: competitive rents are zero)

 $zv_z(z,\omega)$ has a unique maximum at $z^M(\omega)$

Utility ℓ from leisure $0 \le \ell \le L$, where L is the individual endowment of time; leisure = all activities that take place outside of the idea sector

Individual Utility

$$\int v(z(\omega), \omega)g(\lambda)\eta(d\omega) + \ell$$

Labor Demand=Labor Supply

$$\lambda(L-\ell) = \int y(\omega)g(\lambda)\eta(d\omega).$$

Where:

either $y(\omega) = h(\omega)$ when the good is produced,

or $y(\omega) = 0$ otherwise.

Patent Equilibrium

Hart (1979), Makowski (1980), Acemoglu and Zilibotti (1996)

Fixed length ϕ of patent protection for all ideas.

- $_{\square}$ a fraction ϕ of total time occurs under monopoly,
- $_{ extstyle }$ a fraction $(1-\phi)$ of total time occurs under competition

Potentially many individuals can produce or make use of any particular idea.

A particular individual is awarded a "patent" for a particular idea.

When patent expires, output and consumption jump to infinity, price and revenues to zero

- $_{ extstyle }$ A type of good is produced if, given the patent length ϕ , the prospective monopolist finds it profitable to overcome the indivisibility
- ullet Market for innovation equilibrated through the wage rate w .
- $_{ extsf{ iny D}}$ Higher w means fewer ideas produced
- \square When labor demand is strictly less than λL , then wages w=1
- $\ \ \,$ Otherwise w chosen to reduce demand for labor to the point where the amount of leisure is 0

Problem of the Monopolist

sells z units to each of λ consumers at price $v_z(z,\omega)$ revenue $\lambda z(\omega)v_z(z(\omega),\omega)$ has a unique maximum at $z^M(\omega)$ cost is $wh(\omega)$

Private Return per unit of indivisibility of a good with characteristics ω

$$\rho(\omega) = z^{M}(\omega)v_{z}(z^{M}(\omega), \omega)/h(\omega)$$

introduces good if

$$\phi \lambda \rho(\omega) h(\omega) \ge w h(\omega) \text{ or } \rho(\omega) \ge w / \phi \lambda \equiv \underline{\rho}$$

Note: $\underline{\rho}$ strictly decreasing in $\phi\lambda$; "lower quality" ideas introduced

Per-Capita Social Welfare

$$\int_{\rho(\omega)\geq\underline{\rho}} \left[\phi v(z^M(\omega),\omega) + (1-\phi)v^C(\omega) - h(\omega)/\lambda\right] g(\lambda)\eta(d\omega) + L$$

Return Neutrality

$$\nu^{M}(\omega) \equiv v(z^{M}(\omega), \omega)/h(\omega)$$
$$\nu^{C}(\omega) \equiv v^{C}(\omega)/h(\omega)$$

quadratic utility/linear demand $\nu^M=3/2, \nu^C=2$

strong return neutrality $\nu^M(\omega), \nu^C(\omega)$ constant

we assume "weak" return neutrality meaning conditional on ρ .

Aggregate Monopoly Revenue

$$M(\rho) = \int_{\rho}^{\infty} \rho(\omega) h(\omega) \eta(\omega) d\omega$$

$$\Upsilon(\rho) = -\rho M'(\rho) / M(\rho)$$

Assume $\Upsilon(\rho)$ is differentiable

Proposition

Suppose return neutrality. If, for some $\tilde{\rho}$, $\Upsilon'(\rho) \neq 0$ for $0 \leq \rho \leq \tilde{\rho}$, then there exists $\tilde{\lambda}$ such that $\hat{\phi}(\lambda)$ is unique and strictly decreasing for $\lambda > \tilde{\lambda}$. If $\Upsilon'(1/\lambda\hat{\phi}(\lambda)) > 0$ then $\hat{\phi}(\lambda)$ is unique and non-increasgin and conversely.

When the elasticity of total monopoly revenue is increasing with ρ , loss of marginal ideas from decreasing protection more than compensated by inframarginal gains of reduced monopoly distortions

When the elasticity of total monopoly revenue is declining with ρ , demand for labor grows more rapidly than the population

Relation with Production Function Approach

(Grossman and Lai)

Q is quantity of ideas (they are assumed to be all of the same quality)

 $Q = f(\ell)$ for production function of ideas

$$\ell = f^{-1}(Q)$$
; corresponding marginal cost $1/f'(\ell)$

SO

$$M(\rho) = f \left[f' \right]^{-1}(\rho)$$

 Υ the elasticity of M same as elasticity of research output w.r.t. labor Cobb-Douglas implies constant elasticity or Pareto tail

if $g(\lambda) = \lambda$ implies per capita labor goes up linearly with the scale of the economy

Measuring Aggregate Revenue

- ullet all authors take the same amount of time to produce a novel and have the same opportunity cost so $h(\omega)$ is constant
- ♦ authors earn all their income from the sale of their novels
- ◆ profits from the sale of a book can be perfectly anticipated in advance.

Author's Income Distribution Proportional to U.S. Income Distribution

Hardback Novels

For Patents from Lanjouw

Elasticities and $-\rho M'(\rho)$

Computers	Pharmaceuticals	Textiles	Engines
.22 [.17]	.14 [.12]	.19 [.15]	.32 [.23]
.74 [.40]	.53 [.33]	.66 [.38]	.95 [.45]
.93 [.30]	.75 [.30]	.88 [.31]	1.12 [.32]
3.76 [.60]	2.35 [.48]	2.42 [.44]	3.04 [.42]
2.73 [.12]	2.81 [.16]	3.02 [.14]	3.37 [.12]

Labor Demand and Scale of Market

data for 1980-90 from Kanwar and Evenson plus CIA 1990 World Factbook

FIGURE 4.12. Cross Sectional Data

IPRs Strength Size Elasticity [Population] 1		N	Average GDP USD billions	Exports
1	0.21 [0.21]	7	108	14
2	0.38 [0.22]	7	94	33
3	0.38 [-0.04]	12	394	85
4	0.13 [0.14]	4	1586	178

Digression on labor constraint binding

- Super-optimal protection drives up the wage rate
- ➤ Lobbyists point to the high cost of producing new goods (movie, music, drugs) as reason for strong copyright protection
- ➤ Much of high cost is due to a few "stars" large salaries
- ➤ Opportunity costs for these stars is often small
- ➤ Reducing protection lowers rents earned by these stars so reduces costs of producing ideas of a given quality

Quality Nonneutrality

- ♦ Goods with lower private quality have even lower social value: obviously optimal protection should show even greater decline with scale of market
- Private and social values go the opposite direction
 - optimal protection may increase with scale of the market
 - so what's socially valuable is not privately valuable
 - exactly the wrong ideas get produced
 - might be better to have the government pick winners

Other Remarks

- competitive rents will be optimal without any protection at all when the economy is large enough
- ➤ rent-seeking means that inframarginal ideas get the most protection aggravates the monopoly distortion without increasing the marginal ideas produced
- ➤ harmonization means small low protection countries raise their protection and large high protection countries lower their protection not everyone raises protection

Government Grants of Monopolies or Government Prizes?

- > financed by imposing a sales tax on sales of newly invented goods
- ➤ similar to Gilbert and Shapiro [1990] "breadth" measure, and therefore less distortionary than temporary monopolies
- public and private prizes have been widely used historically and are of demonstrated practicality
- ➤ historians of aviation argue that prizes played important role aviation innovation

Mandatory Licensing

- > prize money is simply paid back to same innovator
- ➤ mandatory (statutory, compulsory) licensing widely used in copyright radio play of music and xeroxing of copyrighted materials; in patent, mandatory licensing widely used in Taiwan until forced to reform their patent system by the United States
- > efficiency improvement from replacing unregulated monopoly with regulated monopoly

Cost Based Prizes

- no reason to pay proceeds of taxes on new goods to original innovator
- ▶ better that proceeds be used to defray the costs of producing innovations of high social value
- ➤ best to pay *h* the indivisibility rather than the social value because raising revenue is distortionary
- ➤ intellectual property system makes little use of social knowledge of h (exception of "non-obviousness" requirement of patents now largely defunct); rewards scaled to value not cost
- ➤ if social value poorly correlated with private value rewards based on other information about social value/cost likely to lead to better mix of innovations being produced

Conclusion

Competition = Good

Monopoly = Bad

