
How Irrational Are Subjects in Extensive-
Form Games?

(Joint with Drew Fudenberg)

Two views of equilibrium

(1) introspective
axiomatic versions of common knowledge
tracing procedure

(2) learning
common knowledge a conclusion, not an

assumption

We ask: to what extent can an equilibrium model
drawn from a learning foundation explain
experimental data?

Two theoretical ideas:
• Self Confirming Equilibrium
• ε-equilibrium



2

Two views of experiments

(1)  The stakes are too small to matter
(extreme view of ε-equilibrium)

(2)  The results do not support the “theory”
(usually means some refinement of Nash

equilibrium)

Many proponents of (2) use results to argue
against rationality, at least in the narrow sense
of maximizing monetary payoff
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Self Confirming Equilibrium

s Si i∈  pure strategies for i; σi i∈Σ  mixed
Hi information sets for i
H ( )σ  reached with positive probability under σ
πi i∈Π  behavior strategies
$ ( )π σhi i  map from mixed to behavior strategies
$ ( )ρ π , $ ( ) $ ( $ ( ))ρ σ ρ π σ≡  distribution over terminal

nodes

µi  a probability measure on Π−i

u si i i( )µ  preferences

Π− − − −≡ = ∀ ∈ ∩i i i i i i i iJ h h h H J
i

( ) { ( ) $ ( ), }σ π π π σ
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Nash equilibrium

a mixed profile σ such that for each
si i∈supp( )σ  there exist beliefs µi  such that
• si maximizes ui i( )⋅µ
• µ σi i i H( ( ))Π− − = 1

Unitary Self-Confirming Equilibrium

• µ σ σi i i H( ( | ( )))Π− − = 1
(=Nash with two players)

Heterogeneous Self-Confirming equilibrium

• µ σ σi i i iH s( ( | ( , )))Π− − = 1

Can summarize by means of “observation
function”

J s H H H si i( , ) , ( ), ( , )σ σ σ=
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Public Randomization

1 2R(2,2) L

(3,1)

(1,0)

U

D

Remark:  In games with perfect information, the
set of heterogeneous self-confirming
equilibrium payoffs (and the probability
distributions over outcomes) are convex
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to go beyond self-confirming in general requires
experimentation

might expect self-confirming in the medium run
(Roth-Erev simulations; McKelvey-Palfrey
estimation), and if enough experimentation
Nash in the long-run

another paper “Self-confirming Equilibrium”
explores in detail the connection between self-
confirming, correlated and Nash
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Approximate Equilibrium

• exact:            u s u si i i i i i( ) ( )µ µ≥ ′
approximate:  u s u si i i i i i( ) ( )µ ε µ+ ≥ ′

• Approximate equilibrium can be very different
from exact equilibrium

Radner’s work on finite repeated PD
gang of four on reputation

A small portion of the population playing "non-
optimally" may significantly change the
incentives for other players causing a large
shift in equilibrium behavior.
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How big is big?

• we propose to measure how big is, that is to
measure the minimal value of ε consistent
with players’ play

• given the observed distribution over terminal
nodes we will “attribute” a loss to each
terminal node and report the distribution of
losses

• somewhat involved procedure in general due
to the fact that in extensive form games we do
not directly observe players’ strategies

• while the distribution we report has some
arbitrary accounting conventions, such as
attributing as much of the loss as possible to
the final moves of the game, the mean loss is
uniquely defined and independent of the
particular accounting convention

distribution over outcome is ρ
loss attributed to z is ε ρi z J( , ( ), )⋅
mean   ε ρi J( ( ), )⋅
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J ( )⋅  observation function for unitary or
heterogeneous



10

Sample Calculation from Centipede
Game

1 2 1 2

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40) ($0.80,$3.20)

($6.40,$1.60)

T1[0.08] T2 [0.49] T3[0.75] T4[0.82]

P1
[0.92]

P2
[0.51]

P3
[0.25]

P4
[0.18]

m ai i( ) “worst subsequent payoff”

for player 1
P T

1 $0.20 $0.40
3 $0.80 $1.60
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probability distribution over payoffs pi
y

y where y is a subgame 0 1 2 3, , ,P P P

for player 1
at P3  (.18 $6.40, .82 $0.80)

at y P= 2 for a T Pi = 3 3,
ε ρ π( , ) max{ ,max ( ’ ) ( ) ( ’ )}’ ( )

’
’

a m a up u y ai a g y i i i
y

iuyi
≡ −∈ ∑∑0

max ( ’ ) $ .’ ( )a g y i ii
m a∈ = 1 60

up u y Ti
y

uy
’

’
( ) ( ’ ) $ .π 3 1 60=∑∑

up u y Pi
y

uy
’

’
( ) ( ’ ) . $ . . $ . $ .π 3 18 6 40 82 0 80 1 808= ⋅ + ⋅ =∑∑

ε ρ ε ρ( , ) , ( , )T P3 30 0= =

since ε = 0, we assign the actual probabilities to
the actual payoffs

pP
1

3 0 75 1 60 0 25 18 6 40 82 0 80= ( . $ , , . (. $ . ,. $ . ))

to understand algorithm, if ε > 0 for an action,
then the probability of that action is assigned
mi  (player knows he could get at least this much)

add up over actions to get terminal node
losses
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Centipede Game:  Palfrey and McKelvey

1 2 1 2

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40) ($0.80,$3.20)

($6.40,$1.60)

T1[0.08] T2 [0.49] T3[0.75] T4[0.82]

P1
[0.92]

P2
[0.51]

P3
[0.25]

P4
[0.18]

Numbers in square brackets correspond to the observed conditional probabilities of play
corresponding to rounds 6-10, stakes 1x below.

This game has a unique self-confirming
equilibrium; in it player 1 with probability 1
plays T1
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Rnds=Rounds, WC=Worst Case,
H=Heterogeneous, U=Unitary

*The data on which from which this case is
computed is reported above.

Trials
/

Rnds Stake Ca
s
e

Expected
Loss

Max Ratio

Rnd Pl 1 Pl 2 Both Gain
29* 6-10 1x H $0.00 $0.03 $0.02 $4.0

0
0.4%

29* 6-10 1x U $0.26 $0.17 $0.22 $4.0
0

5.4%

WC 1x H $0.80 $4.0
0

20.0
%

29 1-10 1x H $0.00 $0.08 $0.04 $4.0
0

1.0%

10 1-10 4x H $0.00 $0.28 $0.14 $16.
00

0.9%
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• heterogeneous loss per player is small;
because payoffs are doubling in each stage,
equilibrium is very sensitive to a small number
of player 2’s giving money away at the end of
the game.

• unknowing losses far greater than knowing
losses

• quadrupling the stakes very nearly causes ε to
quadruple

• theory has  substantial predictive power:  see
WC

• losses conditional on reaching the final stage
are quite large--inconsistent with subgame
perfection.  McKelvey and Palfrey estimated
an incomplete information model where some
“types” of player 2 liked to pass in the final
stage.  This cannot explain many players
dropping out early so their estimated model
fits  poorly.
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Heterogeneous Losses

$0.00 $1.60
0.00

0.20

0.40

0.60

0.80

1.00

Player 2 (H)

(No player 1 heterogeneous losses)
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Unitary Losses

 $0.35 for dropping out in stage 3
 $0.62 for dropping out in stage 1.

$0.00 $0.30 $1.60
0.00

0.10
0.20
0.30
0.40
0.50

0.60

Player 2 (U)

$0.30 for dropping out in stage 2: expected loss
of $0.14

$1.60 for giving away money at end: expected
loss of $0.03

$0.00 $0.35 $0.62
0.00

0.10

0.20

0.30

0.40

0.50

0.60

Player 1 (U)
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Best Shot Game: Prasnikar and Roth

1 x1 2 x2

(W(max(x1,x2)-C(x1),
W(max(x1,x2)-C(x2))

x W(x) C(x)
0 $0.00 $0.00
1 $1.00 $0.82
2 $1.95 $1.64
3 $2.85 $2.46
4 $3.70 $3.28
5 $4.50 $4.10
6 $5.25 $4.92
7 $5.95 $5.74
8 $6.60 $6.50
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if the other player makes any contribution at all,
it is optimal to contribute nothing

unique subgame perfect equilibrium  player 1
contributes nothing

another Nash equilibrium player 2 to contributes
nothing regardless of player 1’s play

it is not consistent with Nash equilibrium for
some player 1’s to play 0 and others 4

any other probability distribution over the two
Nash equilibria are heterogeneous self-
confirming
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Trials Rnds Info Case Expected Loss Max Ratio
Pl 1 Pl 2 Both Gain

8 8-10 full H $0.00 $0.12 $0.06 $2.06 2.9%
8 8-10 full U $0.00 $0.12 $0.06 $2.06 2.9%
10 8-10 part H $0.01 $0.15 $0.08 $2.06 3.9%
10 8-10 part U $0.39 $0.15 $0.27 $2.06 13.%

WC H $3.41 $2.06 165%

Rnds=Rounds, WC=Worst Case,
H=Heterogeneous, U=Unitary
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• In the full information case and partial
information heterogeneous case player 2
occasionally contributes less than 4 when
player 1 has contributed nothing; Note that the
player who contributes nothing gets  $3.70
against $0.42 for the opponent who
contributes 4

• larger losses than centipede game with lower
stakes

• full information case heterogeneous losses
equal unitary losses-- player 1 never
contributed anything, and so never had a loss
with either type of information; all losses by
player 2 are necessarily knowing losses

• In the partial information case occasionally
player 1 contributed 4 and player 2 contributed
nothing:  looks like public randomization
between the two Nash equilibria.  This is
inconsistent with Nash equilibrium  but
consistent with self-confirming equilibrium.
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Partial Information Loss Distribution
Player 2

$0.00 $0.10 $0.20 $0.30 $0.40 $0.50 $0.60
0.00

0.10

0.20

0.30

0.40

0.50

0.60

Player 2 (H,U)

  losses correspond almost entirely to under
contributing when player 1 has failed to
contribute

(in one case a player 2 wasted money by
contributing when player has already
contributed--it is hard to find much of a
rationale for this, since neither player benefited
by 2’s action)
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Player 1

$0.00 $1.67
0.00

0.20

0.40

0.60

0.80

Player 1 (U)

(in the heterogeneous case there was only one
game observed in which player 1 failed to play
optimally given his information)

 unitary losses are from contributing 4, when in
fact it is optimal to contribute nothing
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Actual Data

0
1

2
3

4
5Player 2 Contribution

0
1

2

3

4
Player 1 Contribution

0
1

2

3

4

5

6

7

8

9

10

Actual Number of Outcomes:  Partial Information Rounds 8-10

Theoretical Computation

0 1 2 3 4 5 6 7 8Player 2
contribution

0
3

6 Player 1
contribution

0.00

0.20

0.40

0.60

0.80

1.00

Upper bound on fraction of population
playing profile in .08-SCE (H)
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Ultimatum Game:

1 x 2
A
R

($10.00-x,x)

(0,0)

Trials Rnd Cntry Case Expected Loss Max Ratio
Stake Pl 1 Pl 2 Both Gain

27 10 US H $0.00 $0.67 $0.34 $10.00 3.4%
27 10 US U $1.30 $0.67 $0.99 $10.00 9.9%
10 10 USx3 H $0.00 $1.28 $0.64 $30.00 2.1%
10 10 USx3 U $6.45 $1.28 $3.86 $30.00 12.9%
30 10 Yugo H $0.00 $0.99 $0.50 $10? 5.0%
30 10 Yugo U $1.57 $0.99 $1.28 $10? 12.8%
29 10 Jpn H $0.00 $0.53 $0.27 $10? 2.7%
29 10 Jpn U $1.85 $0.53 $1.19 $10? 11.9%
30 10 Isrl H $0.00 $0.38 $0.19 $10? 1.9%
30 10 Isrl U $3.16 $0.38 $1.77 $10? 17.7%

WC H $5.00 $10.00 50.0%

Rnds=Rounds, WC=Worst Case,
H=Heterogeneous, U=Unitary
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• every offer by player 1 is a best response to
beliefs that all other offers will be rejected so
player 1’s heterogeneous losses are always
zero.

• big player 1 losses in the unitary c
• player 2 losses all knowing losses from

rejected offers; magnitudes indicate that
subgame perfection does quite badly

• as in centipede, tripling the stakes increases
the size of losses a bit less than proportionally
(losses roughly double).
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US Distributions

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 $4.50
0.00

0.20

0.40

0.60

0.80

1.00

Player 2 (U,H)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Player 1 (U)
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Raw US Data

x Offers Rejection Probability
$2.00 1 100%
$3.25 2 50%
$4.00 7 14%
$4.25 1 0%
$4.50 2 100%
$4.75 1 0%
$5.00 13 0%

27
US $10.00 stake games, round 10


