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Introduction

“If any one bring an accusation against a man,
and the accused go to the river and leap into the
river, if he sink in the river his accuser shall take
possession of his house. But if the river prove
that the accused is not guilty, and he escape
unhurt, then he who had brought the accusation
shall be put to death, while he who leaped into
the river shall take possession of the house that
had belonged to his accuser.” [2nd law of
Hammurabi]
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puzzling to modern sensibilities for two reasons

♦ based on a superstition that we do not believe to be true – we do not
believe that the guilty are any more likely to drown than the innocent

♦ if people can be easily persuaded to hold a superstitious belief, why
such an elaborate mechanism? Why not simply assert that those who
are guilty will be struck dead by lightning?

we attack these puzzles from the perspective of the theory of learning
in games

♦ which superstitions survive?

♦ Hammurabi had it exactly right: his law uses the greatest amount of
superstition consistent with patient rational learning
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Overview of the Model

♦ society consists of overlapping generations of finitely lived players

♦ indoctrinated into the social norm as children “if you commit a crime
you will be struck by lightning”

♦ enter the world as young adults with prior beliefs that the social norm
is true

♦ being young and relatively patient, having some residual doubt about
the truth of what they were taught, and being rational Bayesians,
young players optimally decide to commit a few crimes to see what
will happen
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The Hammurabi Games

Example 2.1: The Hammurabi Game

Player 1 is a suspect; player 2 an accuser

1 2

N

N

crime
truth

lie

(0,0) (B-P,-C)

(B,-C-P)

(B,B-C)

(B,B-C-P)
1-p
p

p
1-p

exit
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#  social cost of the crime

benefit to accuser of a false accusation, or lie, "  the same as the
benefit of the crime to the suspect

the cost of punishment 0  same for both

assume that the probability of punishment sufficient to deter crime
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Example 2.2: The Hammurabi Game Without a River

1 2crime
truth

lie

(0,0)

(B-P,-C)

(B,B-C)

exit
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Example 2.3: The Lightning Game
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configurations in which there is no crime

Hammurabi game (Nash, but wrong beliefs about off-off path play)

♦ accuser tells the truth because he believes that if he lies he will be
punished with probability 1

Hammurabi game without a river (Nash, but not off-path rational)

♦ accuser tells the truth,  and is indifferent (ex ante, not ex post)

lightning game (self-confirming, but not Nash)

♦ everyone believes that if they commit a crime they will be punished
with probability 1, and that if they exit they will be punished with
probability P
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Simple Games

a simple game

♦ perfect information (each information set is a singleton node)

♦ each player has at most one information set on each path through
the tree. (may have more than one information set, but once he has
moved, he never gets to move again)

generic condition: no own ties

♦ weaker than no ties – allows the Hammurabi games
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The Model

nodes in game tree X 8� , terminal nodes Z : 8� �

feasible actions at information sets � 	! X

pure strategies I IS 3�  , mixed IT , the state is R  a mixed profile
interpreted as fraction of population playing different pure strategies

payoffs �IU : l }

)  players plus Nature ( �) � )

Nature plays a fixed and given mixed strategy �
�)T �

reachable nodes � 	I: S , � 	I8 S , � 	I8 T

nodes reached � 	8 T  (the “equilibrium path”)

behavior strategies IQ
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beliefs about his opponents’ play

IN  a probability measure over I�1 , the set of other players’ behavior
strategies

beliefs are independent: players do not believe that there is a
correlation between how an opponent plays at different information
sets, or how different opponents play

� \ 	I IP X N  marginal induced by beliefs

preferences:

� 	

� � 	 � � � \ 		 � \ 	 � 	
I

I I I I I I I I I I
Z : S

U S U S P P Z U ZN N N
�

w ¸ w � .

when IN  is has a continuous density IG  we write � \ 	� � � 	I I I I IP X G U S G .
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Static Equilibrium Notions

Self-Confirming Equilibrium

Definition 4.1 :  R  is a  self-confirming equilibrium if  for each player I
and for each IS  with � 	 �I ISR �  there are beliefs � 	I ISN  such that

(a) IS  is a best response � 	I ISN  and

(b) � 	I ISN  is correct at every � � 	I IX 8 S R�� ,

Note also that Nash equilibrium strengthens (b) to hold at all
information sets.
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Subgame Confirmed Nash Equilibrium

Definition 4.2:

(a) In a simple game, node X  is one step off the path of Q  if it is an
immediate successor of a node that is reached with positive probability
under Q .

(b) Profile Q  is a subgame-confirmed Nash equilibrium if it is a Nash
equilibrium and if, in each subgame beginning one step off the path,
the restriction of Q  to the subgame is self-confirming in that subgame.
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In a simple game with no more than two consecutive moves, self-
confirming equilibrium for any player moving second implies optimal
play by that player, so subgame-confirmed Nash equilibrium implies
subgame perfection.

can fail when there are three consecutive moves.
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Example 4.1: The Three Player Centipede Game

unique subgame-perfect equilibrium: all players to pass

(drop, drop, pass)  is subgame-confirmed

1

2

3

drop (1,0,0)

(0,1,0)

(0,0,1)

(2,2,2)

drop

drop

pass

pass

pass
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Rational Steady-State Learning

The Agent’s Decision Problem
 “agent” in the role of player i expects to play game 4  times wishes to
maximize

�

�

�
�

4
T

T4
T

% U
E

E
E

�

�

�
� �

TU  realized stage game payoff

agent believes that he faces a fixed time invariant probability
distribution of opponents’ strategies, unsure what the true distribution is

Definition 5.1: Beliefs IN  are non-doctrinaire if IN  is given by a
continuous density function IG  strictly positive at interior points.

Note that allow priors can go to zero on the boundary, as is the case for
many Dirichlet priors
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assume non-doctrinaire prior �
IG

� \ 	IG Z¸  posterior starting with prior IG  after Z  is observed

agents are assumed to play optimally

(dynamic programming problem defined in the paper)

histories are I9

optimal policy a map �I I IR 9 3l   (may be several)
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Steady States in an Overlapping generations model

♦ a continuum population

♦ doubly infinite sequence of periods

♦ generations overlap

♦ ��4  players in each generation

♦ ��4  enter to replace the ��4  player who leave

♦ each agent is randomly and independently matched with one agent
from each of the other populations

each population assumed to use a common optimal rule IR
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given population fractions of each population playing pure strategies
� 	I ISR

Using R  we work out the fraction of the population with each experience
� 	I YR

then recompute the fractions playing different strategies

][ \ � 	

; =� 	 � 	
I I I I

I I I I
Y R Y S

F S YR R
�

� �

This is a polynomial map from the space of mixed strategy profiles to
itself

a fixed point exists, and these fixed points are steady states.
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Patient Stability

 a sequence of steady states  LIM 4
4 R Rld l  we say that R  is a ��G E -

stable state

 If � 	R E  are ��G E -stable states and �LIM � 	E R E Rl l , we say that R  is a
patiently stable state.   

Theorem 5.1:  (Fudenberg and Levine [1993b]) ��G E -steady states are
self-confirming; patiently stable states are Nash.
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Patient Stability in Simple Games

two profiles �R Ra  are path equivalent if they induce the same
distribution over terminal nodes.

Theorem: In a simple game, a patiently stable state R  is path
equivalent to a  subgame-confirmed Nash  equilibrium.

corollary of a more general theorem; note that it is straightforward to
show that a patiently stable state in a simple game must be Nash in
weakly undominated strategies, which eliminates the “bad equilibrium”
in Hammurabi without the river

key result is a converse for simple games
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a profile is nearly pure if Nature does not randomize on the equilibrium
path, and no player except Nature randomizes off the equilibrium path

our proposed Hammurabi game profile is nearly pure – only Nature
randomizes, and only off the equilibrium path

Theorem: In simple games with no own ties, a subgame-confirmed
Nash equilibrium that is nearly pure is path equivalent to a patiently
stable state.

This answers the Hammurabi puzzle: the Hammurabi equilibrium with
the river is patiently stable; without the river it is not, nor is the lightning
equilibrium stable
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Games with Length at Most Three

a game has “length at most three” if no path through the tree hits more
than three information sets

Theorem In simple games with no own ties, no Nature’s move and
length at most three, a subgame-confirmed Nash equilibrium is path
equivalent to a patiently stable state.

because in these games all equilibria are nearly pure

Lemma: In simple games with no own ties, no Nature’s move and
length at most three, a subgame-confirmed Nash equilibrium is path
equivalent to a subgame-confirmed Nash equilibrium in which players
play pure strategies.

in turn follows from

Lemma: In simple games with no own ties, no Nature’s move and
length at most two, every self confirming equilibrium is path equivalent
to a public randomization over Nash equilibria.


