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Extensive Form Examples
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Simultaneous Move Examples

Modified Chain Store

out in

fight 2-ε , 0 -1,-1

give in 2,0 1,1**



4

Inflation Game

Low High

Low 0,0 -2,-1

High 1,-1 -1,0

Inflation Game: LR=government, SR=consumers

consumer preferences are whether or not they guess right

Low High

Low 0,0 0,-1

High -1,-1 -1,0

with a hard-nosed government
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The Model

multiple types of long-run player ω ∈Ω

Ω  is a countable set of types

type is fixed forever (does not change from period to period)

u a1( , )ω  utility depends on type

strategy σ ω1( , )h  depends on type

types are privately known to long-run player, not known to short run
player

strategy σ 2 ( )h  does not depend on type

µ  probability distribution over Ω  commonly known short-run player
prior over types
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Truly Committed Types

type ω( )a1  has a dominant strategy to play a1 in the repeated game:

u a a a
a a
a a

1 1 2 1
1 1

1 1

1
0

(~ , , ( ))
~
~ω =

=
≠

RST
for example

Let n( )ω  be the least utility received by a type ω  in any Nash
equilibrium

let a1 * be a pure strategy Stackelberg strategy for type ω 0 , with
corresponding utility

u u
BR

1 1 1 2
01 2 1* max min ( , , )

( )
=

∈α α α
α α ω
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Theorem:  Fix ω 0  with µ ω( )0 0> , and.  Let ω ω* ( *)≡ a1 , and suppose
that µ µ ω* ( *)≡ > 0.  Then there is a constant k( *)µ  otherwise
independent of µ,Ω  such that

n u uk k( ) * ( )( *) ( *)ω δ δµ µ≥ + −1 11
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Proof

define π t * to be the probability at the beginning of period t by the short-
run player that he is facing type ω *

Let N t( * )π π≤  be the number of times π πt * ≤

Lemma 1:  Suppose that LR plays a1 * always.  Then for any history h
that has positive probability

pr N ht( ( * ) log * / log | )π π µ π≤ > = 0

Lemma 2: There is π < 1 such that if π πt * >  the SR player plays a best
response to a1 *
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• Why do these Lemma’s imply the theorem?

• Why is Lemma 2 true?
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Proof of Lemma 1

Bayes Law

π ω π ω π ω
π

( *| ) ( *| ) ( | *, )
( | )

h h h h
h ht

t t t
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= − −
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1

given ht−1 player 1 and 2 play independently

π ω π ω π ω
π π

( *| ) ( *| ) ( | *, )
( | ) ( | )

h h h h
h h h ht

t t t

t t t t

= − −

− −

1 1
1

1
2

1

since player 1’s type isn’t known to player 2
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π ω π ω π ω
π π ω
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since player 1’s strategy is to always play a1 * π ω( | *, )h ht t
1

1 1− =  so
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the conclusion:

π ω π ω
π

( *| ) ( *| )
*

h h
t

t

t

= −1

• what does this say?

the Lemma now derives from the fact that π ω( *| )ht ≤ 1
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Observational Equivalence

ρ α( | )y  outcome function

α α2 1∈W( )  if there exists ~α1 such that ρ α α ρ α α( |~ , ) ( | , )⋅ = ⋅1 2 1 2   and
α α2 1∈BR(~ )

u u
W

1 1 1 2
01 2 1* max min ( , , )

( )
=

∈α α α
α α ω
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strategies that are observationally equivalent

out in mixed

fight all fight fight

give all give give

mixed all mixed mixed

weak best responses

fight: out

give: in, out

mixed: in, out?

Best case fight:out so u1 2* =
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2

(0,0) 1

(2,-1) (1,1)

BuyOut

HighLow

Quality Game

strategies that are observationally equivalent
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out buy mixed

hi all hi hi

lo all lo lo

mixed all mixed mixed

weak best responses

hi: in, out

lo: out

mixed: in?, out

in every case out is a weak best response so u1 0* =
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Moral Hazard and Mixed Commitments

ρ α( | )y  outcome function

expand space of types to include types committed to mixed strategies:
leads to technical complications because it requires a continuum of
types

p ht( )−1  probability distribution over outcomes conditional on the history
(a vector)

p ht
+

−( )1  probability distribution over outcomes conditional on the history
and the type being in Ω+
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Theorem: for every ε > >0 00,∆  and set of types Ω+  with µ( )Ω+ > 0
there is a K such that if Ω+  is true there is probability less than ε  that
there are more than K periods with

p h p ht t
+

− −− >( ) ( )1 1 0∆
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look for tight bounds

let n n,  be best and worst Nash payoffs to LR

try to get

liminf ( ) limsup ( ) max ( )
( )δ δ α α

ω ω α→ → ∈
= =1 1

1
2 1n n u

BR

game is non-degenerate  if there is no undominated pure action a2

such that for some α 2 2≠ a

u a ui i( , ) ( , )⋅ = ⋅2 2α

counterexample: player 2 gets zero always, player 1 gets either zero or
one depending only on player 2’s action
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game is identified if for all α 2  that are not weakly dominated
ρ α α ρ α α( | , ) ( |~ , )⋅ = ⋅1 2 1 2  implies α α1 1= ~

ρ α α α α( | , ) ( )⋅ =1 2 1 2R

condition for identification R( )α 2  has full row rank for all α 2
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Patient Short Run Players: Schmidt

short run preferences 
10 0
0 1

L
NM

O
QP
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long run preferences

µ 0 01= .
10 0
0 1

L
NM

O
QP  pure coordination

µ* .= 0 01 
10 10
0 1

L
NM

O
QP  commitment type

µ i = 0 89.  
1 1
1 1
L
NM

O
QP indifferent type
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strategies:

normal: play U except if you previously did D, then switch to D

commitment: always play U

indifferent type: U until deviation then D

SR: play L then alternate between R and L (on path)

if 1 deviated to D switch to R forever

if 2 deviated play L; if 1 reacts with U continue with L

                                      reacts with D continue with R
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δ δ1 215 75≥ ≥. , .  then this is a subgame perfect equilibrium

• interesting deviation for SR when supposed to do R deviate to L; but
then indifferent type switches to D forever

• for the normal type to prove he’s not type “i” he must play D revealing
he is not the commitment type
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Suppose that LR can minmax SR in a pure strategy a1

Theorem: LR gets at least min ( , )
( )α

α2 2 1
1 1 2

∈BR a
u a

let u2 be SR minmax

let ~u 2  be second best against a1

N u u n u u= − + − − −ln( ) ln( ~ ) ( ~ )
ln

1 2
2 2 2 2

2

δ
δ

ε δ δ δ= − −
−

− −( ) ( ~ )
( ~ )

( )1 12
2 2 2

2 2 2 2
u u

u u
N
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commit to a1

Lemma: suppose a BR at
2

1 1+ ∉ ( )  with positive probability, then SR must
believe that in t+1,…,t+N there is a probability of at least ε  of not
having a1

• why is this sufficient?



28

Proof of Lemma:

2 can get at least u2 so

( ) ( , )1 2
1

2
1

2
2− + ≥+δ α δu a V ut

if pr a( )1 1> − ε  in t+1,…,t+N

lose at least u u2 2− ~  at t+1

in rest of game gain at most

( ) ( ( ) )1 12 2
2 2

2
1 2

1
− − + + +

=∑δ δ ε ε δt N

t

N
u u u

but we chose N and ε  so that the loss exceeds the gain


